【68】有3顶红帽子,4顶黑 帽子,5顶白帽子。让10个人从矮到高站成一队,给他们每个 人头上戴一顶帽子。每个人都看不见自己戴的帽子的颜色,却只能看见站在前面那些人的 帽子颜色。 (所以最后一个人可以看见前面9个人头上帽子的颜色,而最前面那个人谁的 帽子都看不见。现在从最后那个人开始,问他是不是知道自己戴的帽子颜色,如果他回 答 说不知道,就继续问他前面那个人。假设最前面那个人一定会知道自己戴的是黑帽子。为 什么?
一共3红4黑5白,第十个人不知道的话,可推出前9个人的所有可能情况:
红 黑 白
3 3 3
3 2 4
3 1 5
2 3 4
2 2 5
1 3 5
如果第九个人不知道的话,可推出前8个人的所有可能情况:
红 黑 白
1 2 5
1 3 4
2 1 5
2 2 4
2 3 3
3 1 4
3 2 3
由此类推可知,当推倒第六个人时,会发现他已经肯定知道他自己戴的是什么颜色的帽子
了.
答题完毕.
【69】假设排列着100个乒乓球,由两个人轮流拿球装入口袋,能拿到第100个乒乓球的人为胜利者。条件是:每次拿球者至少要拿1个,但最多不能超过5个,问:如果你是最先拿 球的人,你该拿几个?以后怎么拿就能保证你能得到第100个乒乓球?
拿出4个, 然后按照6的倍数和另外一人分别拿球. 即
另外一人拿1个, 我拿5个
另外一人拿2个, 我拿4个
另外一人拿3个, 我拿3个
另外一人拿4个, 我拿2个
另外一人拿5个, 我拿1个.
最终100个在我手上.
答题完毕.
【70】卢姆教授说:“有一次 我目击了两只山羊的一场殊死决斗,结果引出了一个有趣的 数学问题。我的一位邻居有一只山羊,重54磅,它已有好几个季度在附近山区称王称霸。后来某个好事 之徒引进了一只新的山羊,比它还要重出3磅。开始时,它们相安无事,彼 此和谐相处。可是有一天,较轻的那只山羊站在陡峭的山路顶上,向它的竞争对手猛扑过 去,那对手站在土丘上迎接挑战,而挑战者显然拥有居高临下的优势。不幸的是,由于猛 烈碰撞,两只山羊都一命呜呼了。
现在要讲一讲本题的奇妙之处。对饲养山羊颇有研究,还写过书的乔治.阿伯克龙比说道 :“通过反复实验,我发现,动量相当于一个自20英尺高处坠落下来 的30磅重物的一次撞 击,正好可以打碎山羊的脑壳,致它死命。”如果他说得不错,那么这两只山羊至少要有多大的逼近速度,才能相互撞破脑壳?你能算出来 吗?
自由落体20英尺,速度为20英尺/ 秒
20*30= (54+57)*V
V=50/111 英尺/秒
解答完毕.
【71】据说有人给酒肆的老板娘出了一个难题:此人明明知道店里只有两个舀酒的勺子, 分别能舀7两和11两酒,却硬要老板娘卖给他2两酒。聪明的老板娘毫不含糊,用这两个勺子在酒缸里舀酒,并倒来倒去,居然量出了2两酒,聪明的你能做到吗?
7两倒入11两, 再用7两倒入11两装满, 7两中剩余3两, 倒出11两, 将3两倒入11两, 用7两两次倒入11两装满, 7两中剩余6两, 将11两倒出, 将6两倒入, 然后用7两倒入11两, 剩余
2两. 于是得到.
答题完毕.
【72】已知: 每个飞机只有一个油箱, 飞机之间可以相互加油(注意是相互,没有加油机) 一箱油可供一架飞机绕地球飞半圈,问题:为使至少一架飞机绕地球一圈回到起飞时的飞机场,至少需要出动几架飞机?(所有飞机从同一机场起飞,而且必须安全 返回机场,不允许中途降落,中间没有飞机场)
需要4飞机.
假设需要三架飞机,编号为1,2,3.
三架同时起飞, 飞到1/8 圈处, 1号飞机,给2号,3号,飞机各加上1/8 圈的油, 刚好飞回基
地,此时1号,2号满油,继续前飞;
飞到2/8 圈时候,2号飞机给1号飞机加油1/8圈油量,刚好飞回基地, 3号飞机满油,继续向前
飞行, 到达6/8处无油;
此时重复2号和三号飞机的送油.3号飞机反方向飞行到1/6圈时, 加油1/6圈给给2号飞机,
2号飞机向前飞行X圈, 则3号飞机可向前继续送油, 1/6 –2X 圈. 此时3号刚好飞回, 2号
满油.当X= 1/6-2X时候获得最大. X =1/18.
1/6 + 1/18= 2/ 9. 少于1/4. 所以不能完成.
类比推,当为4架时, 恰好满足条件.
答题完毕.
【73】在9个点上画10条直线,要求每条直线上至少有三个点?
排列如下所示.X代表点, O代表空格.
X O X
O X O
X X X
O X O
X O X
得到10条.
答题完毕.
【74】一个岔路口分别通向诚实国和说谎国。来了两个人,已知一个是诚实国的,另一个是说谎国的。诚实国永远说实话,说谎国永远说谎话。现在你要去说谎国,但不知道应该走哪条路,需要问这两个人。请问应该怎么问?
我要到你的国家去,请问怎么走?然后走向路人所指方向的相反方向.
答题完毕.